Студопедия
rus | ua | other

Home Random lecture






Разработка лекарства


Date: 2015-10-07; view: 393.


QSAR

Исторически всё началось с желания учёных найти количественную связь между структурой вещества и его свойствами и выразить её в виде математического уравнения. Это уравнение должно отражать зависимость одного набора цифр (свойств) от другого набора цифр (структур). Однако при этом возникает трудность. Выразить цифрой свойство достаточно просто — физиологическую активность серии веществ можно измерять количественно. Но как выразить числом структуру химического соединения? Над этим вопросом химики и математики работали в течение многих лет. В настоящее время в QSAR используются так называемые дескрипторы химической структуры.

Дескриптор — это число (или математический параметр), которое характеризует структуру органического соединения, причём так, что подмечаются какие-то важные черты этой структуры. В принципе любое число, которое можно рассчитать из структурной формулы — молекулярный вес, число определённых атомов, связей или групп, молекулярный объём, частичные заряды на атомах, — может выступать в качестве дескриптора. Например, годится ли в качестве дескриптора (то есть характеризует ли соединение) число атомов углерода в нём? Да, и иногда это хороший дескриптор. А число нитрогрупп? Конечно: чем их больше, тем лучше взорвётся — это дескриптор для взрывчатых веществ.

Для предсказания физиологической активности в QSAR обычно используют следующие дескрипторы: электронные эффекты (влияют на ионизацию или полярность соединения), стерические особенности структуры (играют важную роль при оценке прочности связывания исследуемого соединения с биомишенью), липофильность (способность растворяться в жирах характеризует способность лекарства преодолевать клеточные мембраны). Большую роль в QSAR имеют так называемые топологические дескрипторы.

В этом методе структурная формула — чисто математическое понятие, граф. Из теории графов можно посчитать так называемые инварианты графов, которые и рассматриваются как дескрипторы. Применяются и сложные фрагментные дескрипторы, которые оценивают вклад различных частей молекулы в общее свойство. Они значительно облегчают исследователям обратное структурное конструирование неизвестных соединений с потенциально высокой активностью. Модель QSAR — это математическое уравнение, с помощью которого можно описать физиологическую активность (и вообще любое свойство).

Рис. 3. Пример предсказания активности структур методом QSAR (сравнение экспериментальных и предсказанных данных по ингибированию замещенными индолами захвата Са2+)

Метод QSAR работает следующим образом. Сначала группу соединений с известной структурой и известными значениями физиологической активности (полученными из эксперимента) делят на две части: тренировочный и тестовый набор. В этих наборах цифры, характеризующие активность, уже соотнесены с конкретной структурой. Далее выбираются дескрипторы — хорошие компьютерные программы способны перебирать многие сотни дескрипторов. На следующем этапе строят математическую зависимость активности от выбранных дескрипторов для соединений из тренировочного набора и получают так называемое QSAR-уравнение.

Правильность полученного QSAR-уравнения проверяют на тестовом наборе структур. Сначала вычисляют дескрипторы для каждой из тест-структур, подставляют их в QSAR-уравнение, рассчитывают значения активности и сравнивают их с уже известными экспериментальными значениями (рис. 3). Если для тестового набора наблюдается хорошее совпадение расчётных и экспериментальных значений, то данное QSAR-уравнение можно применить для предсказания свойств новых, ещё не синтезированных структур. С помощью этого метода, имея в арсенале совсем небольшое количество химических соединений с известной активностью, можно предсказать необходимую структуру и тем самым резко ограничить круг поисков.

Метод QSAR широко используют химики во всём мире. Например, если взять выпуски журналов „Chemical reviews“ за последние годы, то только в заголовках статей эта аббревиатура встретится несколько раз. Сейчас издаётся несколько специальных журналов, посвященных QSAR.

Завершающая стадия создания лекарственного соединения — его разработка. Оптимизированный лидер ещё улучшают таким образом, чтобы он стал удобным для клинического использования и приобрёл нужные фармакокинетические характеристики. Часто на этой стадии структуру активных соединений снова изменяют. Здесь много методов с красивыми названиями: создание биоизостеров, пролекарств, пептидомиметиков и т. д. Это сугубо „медхимические“ понятия.

Пролекарства — это вещества, не обладающие выраженной физиологической активностью, но способные превратиться в лекарства уже в организме человека. Происходит это в результате либо ферментативной реакции, либо химической (без участия белкового катализатора). Чтобы получить пролекарство, обычно модифицируют какую-то реакционноспособную группу в физиологически активном соединении так, чтобы эта связь разрушалась в организме. С помощью пролекарств можно, например, продлить действие препарата, повысить его растворимость в воде и даже изменить его вкус.

Рис. 4. Примеры группировок, которые кажутся „непохожими“ на карбоксильную группу (–СООН), но тем не менее часто используются вместо неё при биоизостерической замене

Важный метод этого этапа — так называемая изостерическая или биоизостерическая замена. Термин „изостеры“ был введён ещё Ирвингом Ленгмюром в начале XX века: „Молекулы или ионы, которые содержат одинаковое число атомов и имеют одинаковое количество и расположение электронов“. Соответственно изостерическая замена в конструируемом лекарстве — это замена атома или группы на похожую по размеру или валентности. Если при этом сохраняется физиологическая активность, то замена называется „биоизостерической“. Интересно, что термин „биоизостер“ относится и к соединениям, получающимся путём замены на совершенно „непохожие“ группировки, но с сохранением биологических свойств (рис. 4). С помощью биоизостерической замены исследователям удаётся, например, уменьшить токсичность активного соединения, повысить его устойчивость к действию ферментативных систем организма и т. д.

Нельзя не упомянуть ещё об одном важном понятии — о „пептидомиметиках“. Представим себе, что создаваемое нами лекарство должно подействовать на мишень, природный лиганд для которой — пептид. Этот пептид можно взять в качестве соединения-лидера, однако создавать на его основе нужно пептидомиметик — соединение, способное взаимодействовать с той же мишенью, но содержащее непептидные структурные элементы. Это делают потому, что пептиды в качестве лекарств не слишком удобны: плохо растворяются в воде, легко расщепляются ферментами организма. Хорошие же пептидомиметики лишены этих недостатков.

Естественно, каждая структурная модификация, направленная на улучшение фармакокинетических свойств вещества, приводит к созданию нового химического соединения. А оно, конечно же, может иметь меньшую активность или вообще другой тип активности. Поэтому исследования, посвящённые разработке лекарства, часто неотделимы от стадии оптимизации с использованием QSAR и компьютерного моделирования.

Такова в настоящее время общая стратегия создания лекарств. Конечно, с появлением современных методов не исчезнут традиционные методы поиска. Однако интеллектуальная привлекательность рационального драг-дизайна, а также успехи молекулярной биологии, благодаря которым становятся известными всё больше биомишеней, привели к тому, что сейчас значительная часть мирового сообщества химиков-органиков стала заниматься синтезом структур с заранее предсказанными свойствами. В нашей стране этому направлению уделяли мало внимания, но сейчас ситуация меняется. В 1997 году на кафедре органической химии химического факультета МГУ им. М. В. Ломоносова появилась отдельная специализация „Медицинская химия“, были сформированы группы исследователей, работающих в области дизайна физиологически активных соединений. Эту дисциплину начинают преподавать и в некоторых других высших учебных заведениях России. В мае 2004 года в Москве впервые прошла Международная конференция по комбинаторной и медицинской химии под эгидой Европейского общества медицинской химии. Рациональное проектирование лекарств — чрезвычайно перспективное и интересное направление химической науки.



<== previous lecture | next lecture ==>
Оптимизация | Какова всхожесть, таков и урожай
lektsiopedia.org - 2013 год. | Page generation: 0.071 s.